Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.566
Filtrar
1.
Elife ; 122024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587883

RESUMO

Midbrain dopamine (mDA) neurons comprise diverse cells with unique innervation targets and functions. This is illustrated by the selective sensitivity of mDA neurons of the substantia nigra compacta (SNc) in patients with Parkinson's disease, while those in the ventral tegmental area (VTA) are relatively spared. Here, we used single nuclei RNA sequencing (snRNA-seq) of approximately 70,000 mouse midbrain cells to build a high-resolution atlas of mouse mDA neuron diversity at the molecular level. The results showed that differences between mDA neuron groups could best be understood as a continuum without sharp differences between subtypes. Thus, we assigned mDA neurons to several 'territories' and 'neighborhoods' within a shifting gene expression landscape where boundaries are gradual rather than discrete. Based on the enriched gene expression patterns of these territories and neighborhoods, we were able to localize them in the adult mouse midbrain. Moreover, because the underlying mechanisms for the variable sensitivities of diverse mDA neurons to pathological insults are not well understood, we analyzed surviving neurons after partial 6-hydroxydopamine (6-OHDA) lesions to unravel gene expression patterns that correlate with mDA neuron vulnerability and resilience. Together, this atlas provides a basis for further studies on the neurophysiological role of mDA neurons in health and disease.


Assuntos
Ascomicetos , Transtornos Parkinsonianos , Adulto , Humanos , Animais , Camundongos , Neurônios Dopaminérgicos , Perfilação da Expressão Gênica , Transtornos Parkinsonianos/genética , Mesencéfalo , Oxidopamina
2.
Proc Natl Acad Sci U S A ; 121(17): e2318943121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635628

RESUMO

Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4, 5)P2 4- and 5-phosphatase implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and neurological defects in mice (SJ1RQKI mice). Studies of these mice showed, besides an abnormal assembly state of endocytic factors at synapses, the presence of dystrophic nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, suggesting a special lability of DA neurons to the impairment of SJ1 function. Here we have further investigated the impact of SJ1 on DA neurons using iPSC-derived SJ1 KO and SJ1RQKI DA neurons and their isogenic controls. In addition to the expected enhanced clustering of endocytic factors in nerve terminals, we observed in both SJ1 mutant neuronal lines increased cilia length. Further analysis of cilia of SJ1RQDA neurons revealed abnormal accumulation of the Ca2+ channel Cav1.3 and of ubiquitin chains, suggesting a defect in the clearing of ubiquitinated proteins at the ciliary base, where a focal concentration of SJ1 was observed. We suggest that SJ1 may contribute to the control of ciliary protein dynamics in DA neurons, with implications on cilia-mediated signaling.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas do Tecido Nervoso , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Camundongos , Animais , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Mutação
3.
Mov Disord ; 39(3): 601-606, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358016

RESUMO

BACKGROUND: Patients carrying pathogenic variants in GNAO1 present a phenotypic spectrum ranging from severe early-onset epileptic encephalopathy and developmental delay to mild adolescent/adult-onset dystonia. Genotype-phenotype correlation and molecular mechanisms underlying the disease remain understudied. METHODS: We analyzed the clinical course of a child carrying the novel GNAO1 mutation c.38T>C;p.Leu13Pro, and structural, biochemical, and cellular properties of the corresponding mutant Gαo-GNAO1-encoded protein-alongside the related mutation c.68T>C;p.Leu23Pro. RESULTS: The main clinical feature was parkinsonism with bradykinesia and rigidity, unlike the hyperkinetic movement disorder commonly associated with GNAO1 mutations. The Leu ➔ Pro substitutions have no impact on enzymatic activity or overall folding of Gαo but uniquely destabilize the N-terminal α-helix, blocking formation of the heterotrimeric G-protein and disabling activation by G-protein-coupled receptors. CONCLUSIONS: Our study defines a parkinsonism phenotype within the spectrum of GNAO1 disorders and suggests a genotype-phenotype correlation by GNAO1 mutations targeting the N-terminal α-helix of Gαo. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos dos Movimentos , Transtornos Parkinsonianos , Adolescente , Criança , Humanos , Estudos de Associação Genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Transtornos dos Movimentos/genética , Mutação/genética , Transtornos Parkinsonianos/genética , Conformação Proteica em alfa-Hélice
4.
Ann Clin Transl Neurol ; 11(4): 1063-1066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38389300

RESUMO

Parkinsonism-dystonia-2 PKDYS2 is an autosomal-recessive disorder, caused by pathogenic biallelic variants in SLC18A2 which encodes the vesicular monoamine transporter (VMAT2) protein. PKDYS2 is a treatable neurotransmitter disease, and the rate of diagnosis of this disorder has increased significantly with the advance of genomic technologies. Our report highlights a novel pathologic variant in one case and a novel finding on MRI Brain, consisting of a normal symmetrical signal intensity in the dorsal brainstem and pons, and it substantiates the significance of genetic testing in the evaluation of children with developmental delays, which influences clinical decisions to enhance patient outcomes.


Assuntos
Distonia , Distúrbios Distônicos , Transtornos Parkinsonianos , Criança , Humanos , Distonia/genética , Arábia Saudita , Distúrbios Distônicos/genética , Transtornos Parkinsonianos/genética , Testes Genéticos
5.
Metab Brain Dis ; 39(4): 577-587, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305999

RESUMO

Atypical parkinsonism (AP) is a group of complex neurodegenerative disorders with marked clinical and pathophysiological heterogeneity. The use of systems biology tools may contribute to the characterization of hub-bottleneck genes, and the identification of its biological pathways to broaden the understanding of the bases of these disorders. A systematic search was performed on the DisGeNET database, which integrates data from expert curated repositories, GWAS catalogues, animal models and the scientific literature. The tools STRING 11.0 and Cytoscape 3.8.2 were used for analysis of protein-protein interaction (PPI) network. The PPI network topography analyses were performed using the CytoHubba 0.1 plugin for Cytoscape. The hub and bottleneck genes were inserted into 4 different sets on the InteractiveVenn. Additional functional enrichment analyses were performed to identify Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology for a described set of genes. The systematic search in the DisGeNET database identified 485 genes involved with Atypical Parkinsonism. Superimposing these genes, we detected a total of 31 hub-bottleneck genes. Moreover, our functional enrichment analyses demonstrated the involvement of these hub-bottleneck genes in 3 major KEGG pathways. We identified 31 highly interconnected hub-bottleneck genes through a systems biology approach, which may play a key role in the pathogenesis of atypical parkinsonism. The functional enrichment analyses showed that these genes are involved in several biological processes and pathways, such as the glial cell development, glial cell activation and cognition, pathways were related to Alzheimer disease and Parkinson disease. As a hypothesis, we highlight as possible key genes for AP the MAPT (microtubule associated protein tau), APOE (apolipoprotein E), SNCA (synuclein alpha) and APP (amyloid beta precursor protein) genes.


Assuntos
Redes e Vias Metabólicas , Transtornos Parkinsonianos , Mapas de Interação de Proteínas , Biologia de Sistemas , Humanos , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Redes e Vias Metabólicas/genética , Mapas de Interação de Proteínas/genética , Redes Reguladoras de Genes/genética , Animais
6.
Nat Commun ; 15(1): 1541, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378758

RESUMO

Proteostasis can be disturbed by mutations affecting folding and stability of the encoded protein. An example is the ubiquitin ligase Parkin, where gene variants result in autosomal recessive Parkinsonism. To uncover the pathological mechanism and provide comprehensive genotype-phenotype information, variant abundance by massively parallel sequencing (VAMP-seq) is leveraged to quantify the abundance of Parkin variants in cultured human cells. The resulting mutational map, covering 9219 out of the 9300 possible single-site amino acid substitutions and nonsense Parkin variants, shows that most low abundance variants are proteasome targets and are located within the structured domains of the protein. Half of the known disease-linked variants are found at low abundance. Systematic mapping of degradation signals (degrons) reveals an exposed degron region proximal to the so-called "activation element". This work provides examples of how missense variants may cause degradation either via destabilization of the native protein, or by introducing local signals for degradation.


Assuntos
Transtornos Parkinsonianos , Proteostase , Humanos , Proteostase/genética , Ubiquitina-Proteína Ligases/metabolismo , Mutação , Transtornos Parkinsonianos/genética , Mutação de Sentido Incorreto , Proteínas/metabolismo
7.
Parkinsonism Relat Disord ; 120: 105991, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184995

RESUMO

INTRODUCTION: X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disorder that may result in severe speech impairment. The literature suggests that there are differences in the speech of individuals with XDP and healthy controls. This study aims to examine the motor speech characteristics of the mixed dystonia-parkinsonism phase of XDP. METHOD: We extracted acoustic features representing coordination, consistency, speed, precision, and rate from 26 individuals with XDP and 26 controls using Praat, MATLAB, and R software. Group demographics were compared using descriptive statistics. A one-way analysis of variance (ANOVA) with Tukey's post hoc test was used to test for acoustic differences between the two groups. RESULTS: The XDP group had significantly lower consistency, speed, precision, and rate than controls (p < 0.05). For coordination, the XDP group had a smaller ratio of pause duration during transitions when compared to controls. DISCUSSION: To our knowledge, this study is the first to describe the motor speech characteristics of the mixed dystonia-parkinsonism phase of XDP. The motor speech of mixed dystonia-parkinsonism XDP is similar to prior characterizations of mixed hyperkinetic-hypokinetic dysarthria with noted differences in articulatory coordination, consistency, speed, precision, and rate from healthy controls. Identifying the motor speech components of all three phenotypes of XDP (i.e., dystonia-dominant phase, parkinsonism-dominant phase, and mixed dystonia-parkinsonism phase) is needed to establish markers of speech impairment to track disease progression.


Assuntos
Distonia , Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Transtornos Parkinsonianos , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/genética , Transtornos Parkinsonianos/genética , Disartria
8.
Neurol Sci ; 45(4): 1749-1753, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38252374

RESUMO

BACKGROUND: ATP13A2 is a monogenic causative gene of Parkinson's disease, whose biallelic mutations can result in Kufor-Rakeb syndrome. Biallelic mutations in ATP13A2 have also been reported in pure or complicated hereditary spastic paraplegia (HSP). Here, we report clinical, neuroimaging, and genetic findings from a patient with a novel homozygous mutation in ATP13A2 presenting with HSP plus parkinsonism. METHODS: Whole genome sequencing was performed on the patient, a 46-year-old Chinese woman from a consanguineous family, to identify the genetic cause. Furthermore, functional studies of the identified ATP13A2 mutation were conducted. RESULTS: The patient initially presented with abnormal gait because of lower-limb spasticity and recurrent seizures. Parkinsonism (presenting as bradykinesia and rigidity) and peripheral neuropathy in lower limbs further evolved and resulted in her eventual use of a wheelchair. Symmetrically decreased dopamine transporter density was detected within the bilateral putamen and caudate nucleus in dopamine transporter-positron emission tomography. Genetic analysis revealed a novel homozygous missense mutation in ATP13A2 (c.2780 T > C, p.Leu927Pro), which was heterozygous in the patient's parents and son. Functional studies suggested that this mutation results in the reduced expression and altered subcellular localization of ATP13A2. CONCLUSIONS: Our report broadens the genetic and phenotypic spectrum of ATP13A2-related HSP. Further research is needed to fully elucidate the mechanism linking ATP13A2 variants to HSP.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Paraplegia Espástica Hereditária , Humanos , Feminino , Pessoa de Meia-Idade , Proteínas da Membrana Plasmática de Transporte de Dopamina , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Mutação/genética , Transtornos Parkinsonianos/genética , Fenótipo , Linhagem , ATPases Translocadoras de Prótons/genética
9.
Stem Cell Res ; 75: 103305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215561

RESUMO

A variant of the phospholipase A2 group VI gene (PLA2G6, PARK14) has been found to cause early-onset Parkinson's disease (EOPD). In this study, we reprogrammed peripheral blood mononuclear cells from a 39-year-old patient with EOPD carrying a homozygous PLA2G6 mutation c.1898C > T (p. A633V) to generate the human induced pluripotent stem cell line LNDWCHi001-A. This cell line was identified based on pluripotent markers and displayed differentiation capacity, providing an essential model for studying the pathogenesis of EOPD and drug screening.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Adulto , Doença de Parkinson/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Transtornos Parkinsonianos/genética , Mutação/genética , Fosfolipases A2 do Grupo VI/genética , Fosfolipases A2 do Grupo VI/metabolismo
10.
Neurol Sci ; 45(1): 309-313, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37752324

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is considered a primarily sporadic neurodegenerative disease, but the role of genetic is poorly understood. CASE: We present a female patient of Moroccan origin who developed a rapidly progressive non-levodopa responsive parkinsonism, gait and balance problems, and dysautonomia including severe bulbar symptoms. She was diagnosed with MSA Parkinsonian-type (MSA-P) and suddenly died at night at 58 years of age. Reduced striatal DAT-SPECT, putaminal hyperintensity on T2-MRI, and hypometabolism with FDG-PET were present. Genetic testing documented a G2019S mutation in the LRRK2 gene. A skin biopsy was obtained and used to perform alpha-synuclein RT-QuIC, which was negative, and immunohistochemical analysis, which demonstrated abnormal alpha-synuclein deposits in cutaneous nerves. Elevated blood neurofilament light chain levels were also documented. CONCLUSIONS: LRRK2 mutations are the most common cause of monogenic Parkinson's disease (PD) and G2019S is the most frequent variant. Our patient presented with biological, clinical, and radiological features of MSA, but genetic testing revealed a G2019S LRRK2 mutation, which has been previously reported only in one other case of pathologically proven MSA but with mild progression. In our patient, post-mortem confirmation could not be performed, but RT-QuIC and immunohistochemical findings on skin biopsy support the diagnosis of MSA. G2019S LRRK2 may be linked to an increased risk of MSA. Cases of atypical parkinsonism with rapid disease course should be screened for PD-related genes especially in populations with a high prevalence of mutations in known genes.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Feminino , alfa-Sinucleína/genética , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/genética
11.
Neurobiol Dis ; 190: 106367, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042508

RESUMO

X-linked dystonia-parkinsonism (XDP) is a rare neurodegenerative disease endemic to the Philippines. The genetic cause for XDP is an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within intron 32 of TATA-binding protein associated factor 1 (TAF1) that causes an alteration of TAF1 splicing, partial intron retention, and decreased transcription. Although TAF1 is expressed in all organs, medium spiny neurons (MSNs) within the striatum are one of the cell types most affected in XDP. To define how mutations in the TAF1 gene lead to MSN vulnerability, we carried out a proteomic analysis of human XDP patient-derived neural stem cells (NSCs) and MSNs derived from induced pluripotent stem cells. NSCs and MSNs were grown in parallel and subjected to quantitative proteomic analysis in data-independent acquisition mode on the Orbitrap Eclipse Tribrid mass spectrometer. Subsequent functional enrichment analysis demonstrated that neurodegenerative disease-related pathways, such as Huntington's disease, spinocerebellar ataxia, cellular senescence, mitochondrial function and RNA binding metabolism, were highly represented. We used weighted coexpression network analysis (WGCNA) of the NSC and MSN proteomic data set to uncover disease-driving network modules. Three of the modules significantly correlated with XDP genotype when compared to the non-affected control and were enriched for DNA helicase and nuclear chromatin assembly, mitochondrial disassembly, RNA location and mRNA processing. Consistent with aberrant mRNA processing, we found splicing and intron retention of TAF1 intron 32 in XDP MSN. We also identified TAF1 as one of the top enriched transcription factors, along with YY1, ATF2, USF1 and MYC. Notably, YY1 has been implicated in genetic forms of dystonia. Overall, our proteomic data set constitutes a valuable resource to understand mechanisms relevant to TAF1 dysregulation and to identify new therapeutic targets for XDP.


Assuntos
Distonia , Distúrbios Distônicos , Doenças Neurodegenerativas , Transtornos Parkinsonianos , Humanos , Distonia/genética , Distonia/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteômica , Fator de Transcrição TFIID/genética , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo
13.
Mov Disord ; 39(1): 6-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921246

RESUMO

BACKGROUND: Identifying hereditary parkinsonism is valuable for diagnosis, genetic counseling, patient prioritization in trials, and studying the disease for personalized therapies. However, most studies were conducted in Europeans, and limited data exist on admixed populations like those from Latin America. OBJECTIVES: This study aims to assess the frequency and distribution of genetic parkinsonism in Latin America. METHODS: We conducted a systematic review and meta-analysis of the frequency of parkinsonian syndromes associated with genetic pathogenic variants in Latin America. We defined hereditary parkinsonism as those caused by the genes outlined by the MDS Nomenclature of Genetic Movement Disorders and heterozygous carriers of GBA1 pathogenic variants. A systematic search was conducted in PubMed, Web of Science, Embase, and LILACS in August 2022. Researchers reviewed titles and abstracts, and disagreements were resolved by a third researcher. After this screening, five researchers reanalyzed the selection criteria and extracted information based on the full paper. The frequency for each parkinsonism-related gene was determined by the presence of pathogenic/likely pathogenic variants among screened patients. Cochran's Q and I2 tests were used to quantify heterogeneity. Meta-regression, publication bias tests, and sensitivity analysis regarding study quality were also used for LRRK2-, PRKN-, and GBA1-related papers. RESULTS: We included 73 studies involving 3014 screened studies from 16 countries. Among 7668 Latin American patients, pathogenic variants were found in 19 different genes. The frequency of the pathogenic variants in LRRK2 was 1.38% (95% confidence interval [CI]: 0.52-2.57), PRKN was 1.16% (95% CI: 0.08-3.05), and GBA1 was 4.17% (95% CI: 2.57-6.08). For all meta-analysis, heterogeneity was high and publication bias tests were negative, except for PRKN, which was contradictory. Information on the number of pathogenic variants in the other genes is further presented in the text. CONCLUSIONS: This study provides insights into hereditary and GBA1-related parkinsonism in Latin America. Lower GBA1 frequencies compared to European/North American cohorts may result from limited access to gene sequencing. Further research is vital for regional prevalence understanding, enabling personalized care and therapies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos Parkinsonianos , Humanos , América Latina/epidemiologia , Transtornos Parkinsonianos/epidemiologia , Transtornos Parkinsonianos/genética
14.
Neurol Sci ; 45(3): 1051-1055, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37730935

RESUMO

The mutations on microtubule associated protein tau (MAPT) gene manifest clinically with behavioural frontotemporal dementia (FTD), parkinsonism, such as progressive supranuclear palsy and corticobasal degeneration, and rarely with amyotrophic lateral sclerosis (ALS). FTD-parkinsonism and FTD-ALS are clinical overlaps included in the spectrum of MAPT mutation's phenotypes. The mutations on MAPT gene cause the dysfunction of tau protein determining its accumulation in neurofibrillary tangles. Recent data describe frequently the co-occurrence of the aggregation of tau protein and α-synuclein in patients with parkinsonism and Parkinson disease (PD), suggesting an interaction of the two proteins in determining neurodegenerative process. The sporadic description of PD-ALS clinical complex, known as Brait-Fahn-Schwarz disease, supports the hypothesis of common neuropathological pathways between different disorders. Here we report the case of a 54-year-old Italian woman with idiopathic PD later complicated by ALS carrying a novel MAPT variant (Pro494Leu). The variant is characterized by an amino acid substitution and is classified as damaging for MAPT functions. The case supports the hypothesis of tau dysfunction as the basis of multiple neurodegenerative disorders.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Doença de Parkinson , Transtornos Parkinsonianos , Feminino , Humanos , Pessoa de Meia-Idade , Esclerose Amiotrófica Lateral/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteínas tau/genética , Doença de Parkinson/genética , Mutação/genética , Transtornos Parkinsonianos/genética
15.
J Neurol ; 271(1): 419-430, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750949

RESUMO

BACKGROUND AND OBJECTIVE: Biallelic mutations in the COA7 gene have been associated with spinocerebellar ataxia with axonal neuropathy type 3 (SCAN3), and a notable clinical diversity has been observed. We aim to identify the genetic and phenotypic spectrum of COA7-related disorders. METHODS: We conducted comprehensive genetic analyses on the COA7 gene within a large group of Japanese patients clinically diagnosed with inherited peripheral neuropathy or cerebellar ataxia. RESULTS: In addition to our original report, which involved four patients until 2018, we identified biallelic variants of the COA7 gene in another three unrelated patients, and the variants were c.17A > G (p.D6G), c.115C > T (p.R39W), and c.449G > A (p.C150Y; novel). Patient 1 presented with an infantile-onset generalized dystonia without cerebellar ataxia. Despite experiencing an initial transient positive response to levodopa and deep brain stimulation, he became bedridden by the age of 19. Patient 2 presented with cerebellar ataxia, neuropathy, as well as parkinsonism, and showed a slight improvement upon levodopa administration. Dopamine transporter SPECT showed decreased uptake in the bilateral putamen in both patients. Patient 3 exhibited severe muscle weakness, respiratory failure, and feeding difficulties. A haplotype analysis of the mutation hotspot in Japan, c.17A > G (p.D6G), uncovered a common haplotype block. CONCLUSION: COA7-related disorders typically encompass a spectrum of conditions characterized by a variety of major (cerebellar ataxia and axonal polyneuropathy) and minor (leukoencephalopathy, dystonia, and parkinsonism) symptoms, but may also display a dystonia-predominant phenotype. We propose that COA7 should be considered as a new causative gene for infancy-onset generalized dystonia, and COA7 gene screening is recommended for patients with unexplained dysfunctions of the central and peripheral nervous systems.


Assuntos
Ataxia Cerebelar , Distonia , Distúrbios Distônicos , Transtornos Parkinsonianos , Humanos , Masculino , Ataxia Cerebelar/genética , Distúrbios Distônicos/complicações , Distúrbios Distônicos/diagnóstico por imagem , Distúrbios Distônicos/genética , Levodopa , Mutação/genética , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/genética , Fenótipo , Adulto Jovem
16.
Mov Disord ; 39(2): 249-258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38014588

RESUMO

Recent studies show that pathogenic variants in DNAJC12, a co-chaperone for monoamine synthesis, may cause mild hyperphenylalaninemia with infantile dystonia, young-onset parkinsonism, developmental delay and cognitive deficits. DNAJC12 has been included in newborn screening, most revealingly in Spain, and those results highlight the importance of genetic diagnosis and early intervention in combating human disease. However, practitioners may be unaware of these advances and it is probable that many patients, especially adults, have yet to receive molecular testing for DNAJC12. Hence, this review summarizes genotype-phenotype relationships and treatment paradigms for patients with pathogenic variants in DNAJC12. It provides an overview of the structure of DNAJC12 protein, known genetic variants, domains, and binding partners, and elaborates on its role in monoamine synthesis, disease etiology, and pathogenesis. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Transtornos dos Movimentos , Transtornos Parkinsonianos , Fenilcetonúrias , Adulto , Humanos , Recém-Nascido , Aminas , Transtornos dos Movimentos/genética , Transtornos Parkinsonianos/genética , Fenilcetonúrias/genética , Fenilcetonúrias/patologia , Proteínas Repressoras/genética
18.
Parkinsonism Relat Disord ; 119: 105962, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134678

RESUMO

INTRODUCTION: Progressive supranuclear palsy (PSP) is an atypical parkinsonism caused by the intracerebral aggregation of the microtubule-associated protein tau (MAPT) which is encoded by MAPT gene. Although PSP is a sporadic disease, MAPT mutations have been reported in rare cases. METHODS: Among 190 patients with PSP who were recruited by the Neurodegenerative Research Group at Mayo Clinic during 2009-2023, we identified two patients who fulfilled diagnostic criteria for PSP-Richardson's syndrome (PSP-RS) and harbor novel MAPT mutations. To better investigate the potential effects of these mutations, we compared the clinical, and neuroimaging characteristics of these two patients to 20 randomly selected patients with PSP-RS without a MAPT mutation. RESULTS: MAPT c.1024G > A, p. Glu342Lys, and MAPT c.1217 G > A, p. Arg406Gln mutations were found in 2 men who developed PSP-RS with atypical features at the ages of 60 and 62 years, respectively. Glu342Lys mutation was associated with features resembling alpha-synucleinopathies (autonomic dysfunction, dream enactment behavior), while both mutations were associated with features suggestive of Alzheimer's disease with poorer performance on tests of episodic memory. Comparison of 18F-flortaucipir uptake between the two MAPT mutation cases with 20 patients without a mutation revealed increased signal on flortaucipir-PET in bilateral medial temporal lobe regions (amygdala, entorhinal cortices, hippocampus, parahippocampus) but not in PSP-related regions (globus pallidum, midbrain, superior frontal cortex and dentate nucleus of the cerebellum). CONCLUSION: Glu342Lys and Arg406Gln mutations appear to modify the PSP-RS phenotype by targeting the medial temporal lobe regions resulting in more memory loss and greater flortaucipir uptake.


Assuntos
Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Masculino , Humanos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Mutação/genética , Neuroimagem , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/genética , Fenótipo
19.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069057

RESUMO

Parkin, the gene responsible for hereditary Parkinson's disease (PD) called "Autosomal Recessive Juvenile Parkinsonism (AR-JP)" was discovered a quarter of a century ago. Owing to its huge gene structure and unique protein functions, parkin has become a subject of interest to those involved in PD research and researchers and clinicians in various fields and is being vigorously studied worldwide in relation to its nature and disease. The gene structure was registered under the gene name "parkin" in the GenBank in 1997. In 1998, deletion and point mutations in the parkin gene were reported, thereby demonstrating parkin is the causative gene for hereditary PD. Although 25 years have passed since the gene's discovery and many researchers have worked tirelessly to elucidate the function of the Parkin protein and the mechanism of its role against neuronal cell death and pathogenesis remain unknown, which raises a major question concerning the current leading hypothesis. In this review, we present the results of related research on the parkin gene in chronological order and discuss unresolved problems concerning its function and pathology as well as new trends in the research conducted to solve them. The relationship between parkin and tumorigenesis has also been addressed from the perspective of Parkin's redox molecule.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/genética , Transtornos Parkinsonianos/genética
20.
Mov Disord ; 38(12): 2249-2257, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926948

RESUMO

BACKGROUND: Parkin RBR E3 ubiquitin-protein ligase (PRKN) mutations are the most common cause of young onset and autosomal recessive Parkinson's disease (PD). PRKN is located in FRA6E, which is one of the common fragile sites in the human genome, making this region prone to structural variants. However, complex structural variants such as inversions of PRKN are seldom reported, suggesting that there are potentially unrevealed complex pathogenic PRKN structural variants. OBJECTIVES: To identify complex structural variants in PRKN using long-read sequencing. METHODS: We investigated the genetic cause of monozygotic twins presenting with a young onset dystonia-parkinsonism using targeted sequencing, whole exome sequencing, multiple ligation probe amplification, and long-read sequencing. We assessed the presence and frequency of complex inversions overlapping PRKN using whole-genome sequencing data of Accelerating Medicines Partnership Parkinson's disease (AMP-PD) and United Kingdom (UK)-Biobank datasets. RESULTS: Multiple ligation probe amplification identified a heterozygous exon three deletion in PRKN and long-read sequencing identified a large novel inversion spanning over 7 Mb, including a large part of the coding DNA sequence of PRKN. We could diagnose the affected subjects as compound heterozygous carriers of PRKN. We analyzed whole genome sequencing data of 43,538 participants of the UK-Biobank and 4941 participants of the AMP-PD datasets. Nine inversions in the UK-Biobank and two in AMP PD were identified and were considered potentially damaging and likely to affect PRKN expression. CONCLUSIONS: This is the first report describing a large 7 Mb inversion involving breakpoints outside of PRKN. This study highlights the importance of using long-read sequencing for structural variant analysis in unresolved young-onset PD cases. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Heterozigoto , Mutação/genética , Doença de Parkinson/genética , Transtornos Parkinsonianos/genética , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...